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1. Introduction and summary

The sigma model on AdS5 × S5 [1] is complicated interacting theory whose solution is

currently beyond the reach.1 On the other hand recently J. Maldacena and I. Swanson

proposed a relatively simple kinematical truncation of this theory [12]. Technical simplifi-

cations allow us to test some conjectures considering integrability of the string theory on

AdS5 ×S5.2 More precisely, the sigma model in this limit leads (after gauge fixing) to sim-

pler toy model that is not, however, Lorentz-invariant theory in 1 + 1 dimensions. On the

other hand it is well defined system on its own. In fact, this system was carefully analysed

in [12] where world-sheet S-matrix was also discussed. Moreover, it was demonstrated an

classical integrability of the O(N) sigma model in the near flat space limit in the sense

that the Lax pair was constructed. This is very interesting result since now we have Lax

pair for completely gauge fixed theory where the Virasoro constraints were solved. Since

the form of the Lax pair is rather unusual it is interesting to study the property of this

theory further.

It is well known that the existence of Lax connection implies the existence of an infinite

tower of conserved charges in the classical theory. However, as was stressed recently in [24]

this does not quite coincide with the standard definition of integrability. Integrability in

the standard sense requires not only the existence of a tower of conserved charges but also

requires that these charges are in ”involution”. In other words, these conserved charges

Poisson brackets commute with each other.

However there is a long-standing problem in determining the Poisson brackets of the

conserved charged for classical string theory formulated on background that admits Lax

connection. Namely, the problem is due to the presence of Non-Ultra Local terms in

the Poisson brackets of the world-sheet fields that lead to ambiguities in brackets for the

1For alternative pure-spinor approach description of superstring theory on AdS5 × S5, see [2 – 11].
2For some related works, see [13 – 20].
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charges.3 As was shown recently in [24] a resolution of this problem is based on earlier work

of Maillet [22, 23] where he proposed the regularisation the problematic brackets. Then this

procedure was applied to the simplest classical subsector of the AdS5×S5 geometry in [24].

It was shown that this prescription leads to a very natural symplectic structure on the

space of finite-gap solutions of the string equations of motion that were constructed in [27].

Then it was shown in [28] that the string theory on AdS5 × S5 possesses infinite number

of conserved charges that are in involution even on the world-sheet with general metric.

Explicitly, the Poisson bracket of spatial components of Lax connection was calculated and

it was shown that its form does not depend on world-sheet metric and takes precisely the

form as in [27]. However it is important to stress that this analysis was valid in case when

either the diffeomorphism invariance of theory was preserved or the metric components

were fixed in some general form while the symmetry generated by Virasoro constraints was

preserved. On the other hand it is not clear whether integrability is preserved in case of

completely fixed theory, as for example, string theory in uniform light-cone gauge [29 – 31].4

As the first step in the answering of this question we would like to calculate the Poisson

bracket of the spatial components of Lax connection for simpler model introduced in [12].

It turns out that even if the resulting Poisson bracket is very complicated one can map it,

following [22, 23] to the form that shows that the theory possesses an infinite number of

local charges that are in involutions. We mean that this is a nice result that shows that

the integrability persists in case of complete fixed theory as well.

We can extend this work in various ways. For example, it would be nice to perform the

same analysis for the supersymmetric form of the model given in [12]. Then we would like to

calculate Poisson brackets of Lax connection for bosonic string in uniform light-cone gauge.

The organisation of this paper is as follows. In next section 2 we review the procedure

presented in [12] for O(N) sigma model that leads to simpler model with completely fixed

symmetry. In section 3 we review the construction of Lax connection for this system.

Then in section 4 we present the Hamiltonian formalism of this system and we calculate

the Poisson brackets of spatial components of Lax connection. Using these results we argue

for integrability of the theory. Finally, in appendix (A) we review Maillet’s treatment of

the monodromy matrix and Lax connection.

2. Reduced O(N) Sigma Model

In this section we review the analysis presented in [12] that leads to interesting new 1 + 1

dimensional field theory. We consider O(N) sigma model. The target space of this sigma

model is a sphere SN−1. Let us consider a state with a constant spin density J = J12,

where Jkl are rotation generators in the kl plane. Then we begin with the action

S = −
√

λ

4π

∫

dσ̃0dσ̃1√−η(−ηαβ∂αt∂βt + ηαβ∂αxm∂βxn) ,

xmxnδmn = 1 , m = 1, . . . , N , (2.1)

3For recent discussion of these problems in the context of string theory on AdS5 × S5, see [15, 25, 26].
4This gauge was also discussed in [32, 33].
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where ∂α ≡ ∂
∂σ̃α , α = 0, 1 and we work in conformal gauge with the world-sheet metric

ηαβ = diag(−1, 1). To have a contact with [12] we introduce the parameter

g =

√
λ

4π
. (2.2)

For simplicity, we start with the case when N = 3 and parametrize S2 as

x1 = sin θ , x2 = cos θ cos φ , x3 = cos θ sin φ . (2.3)

Then the action (2.1) takes the form

S = 2g

∫

dσ̃+dσ̃−(−∂σ̃+t∂σ̃−t + cos2 θ∂σ̃+φ∂σ̃−φ + ∂σ̃+θ∂σ̃−θ) , (2.4)

where we have introduced the light-cone coordinates5

σ̃± = σ̃0 ± σ̃1 . (2.5)

Further, since the action (2.4) is defined with fixed form of the world-sheet metric the

theory has to be accompanied with the corresponding Virasoro constrains

T++ = g[−∂σ̃+t∂σ̃+t + cos2 θ∂σ̃+φ∂σ̃+φ + ∂σ̃+θ∂σ̃+θ] = 0 ,

T−− = g[−∂σ̃−t∂σ̃−t + cos2 θ∂σ̃−φ∂σ̃−φ + ∂σ̃−θ∂σ̃−θ] = 0 . (2.6)

Our goal is to consider state with a constant spin density J12 = J . Let us start with

solution: dφ
dσ̃0 = 1 and θ = 0 and perform a boost on the world-sheet coordinates σ̃± =

σ̃0 ± σ̃1 and expand in small fluctuations around the constant spin-density solution

σ̃+ = 2
√

gσ+ , σ̃− =
σ−

2
√

g
,

φ = σ̃0 +
δ√
g

=
σ̃+ + σ̃−

2
+

δ√
g

=
√

gσ+ +
χ√
g

,

χ =
σ−

4
+ δ ,

θ =
y√
g

,

t = σ̃0 =
1

2
(σ̃+ + σ̃−) = σ+ +

σ−

4
√

g
, g → ∞ , (2.7)

where σ± are the light-cone coordinates after performing the boost. Note that we are

interested in solutions where χ = 1
4σ− + δ with δ representing small fluctuations. Then the

rescaling (2.7) implies

dσ̃+dσ̃− = dσ+dσ− ,

∂

∂σ̃+
=

1

2
√

g

∂

∂σ+
≡ 1

2
√

g
∂+ ,

∂

∂σ̃−
= 2

√
g

∂

∂σ−
≡ 2

√
g∂− . (2.8)

5In the light-cone frame the metric components are η+− = η−+ = −2, with the inverse η+− = η−+ = − 1
2

and with the corresponding determinant
√−η = 1

2
.
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Using (2.7) and (2.8) the action (2.4), up to constant and total derivative terms, is finite

S = 2

∫

dσ+dσ−[∂+χ∂−χ + ∂+y∂−y − y2∂−χ] . (2.9)

Finally, to generalize to the case of O(N) sigma model we replace y2 with y2 → ~y2 ≡
yiyi , i = 1, . . . , N − 2 in the above action and we obtain

S = 2

∫

dσ+dσ−[∂−χ∂+χ + ∂+~y∂−~y − ~y2∂−χ] . (2.10)

Note also that under the rescaling (2.7), T++ given in (2.6) takes the form

lim
g→∞

T++ =
1

2

(

∂+χ − ~y2

2

)

+ O

(

1

g

)

≡ 1

2
j+ + O

(

1

g

)

(2.11)

and hence the Virasoro constraint T++ = 0 implies the constraint

j+ ≡ ∂+χ − ~y2

2
= 0 . (2.12)

In the same way the rescaling (2.7) performed on T−− implies

∂−χ∂−χ + ∂−~y∂−~y = 16 . (2.13)

In summary, we have two constraints in the theory

Φ1 = ∂−χ∂−χ + ∂−~y∂−~y − 16 = 0 ,

Φ2 = ∂+χ − ~y2

2
= 0 . (2.14)

Following [12] we can move to a gauge fixed Lagrangian by defining new coordinates

x+ ≡ σ+ , x− ≡ σ−

2
+ 2χ . (2.15)

Then it is easy to see that

∂+ = ∂x+ + 2∂+χ∂x− = ∂x+ + ~y2∂x− ,

∂− = 2

(

1

4
+ ∂−χ

)

∂x− , (2.16)

where we have used (2.14). Note also that Φ2 implies

∂−χ =
1
4 − (∂x−~y)2

1 + 4(∂x−~y)2
,

∂−χ
1
4 + ∂−χ

= 2

(

1

4
− (∂x−~y)2

)

. (2.17)

Let us now consider the equations of motion for yi that follow from the action (2.10)

∂+∂−yi + yi∂−χ = 0 . (2.18)

– 4 –
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Then using (2.16) and (2.17) we can map (2.18) into

∂x−∂x+yi + ∂x−(~y2∂x−yi) + yi

(

1

4
− (∂x−y)2

)

= 0 . (2.19)

Then it is easy to see that these equations of motion follow from the variation of the action

S = 2

∫

dx+dx−

[

∂x+~y∂x−~y − 1

4
~y2 + ~y2(∂x−~y∂x−~y)

]

. (2.20)

The action (2.20) will be starting point for the Hamiltonian treatment of the reduced

model. Before we proceed to this question we introduce the Lax connection for the theory

given above.

3. Lax connection

In this section we introduce Lax connection that was given in [12]. As was argued there

Lax connection can be obtained by taking a simple limit of the connection of O(N) theory.

In order to write it explicitly, we select one of the O(N) generators J12 and consider the

off-diagonal generators that mix (1, 2) plane with the rest. We denote these generators as

J±i , i = 1, . . . , N − 2. We also need following commutation relations:

[

J12, J±i
]

= ±J±i ,
[

J+i, J−j
]

= δijJ
12 − J ij ,

[

J−i, J+j
]

= −δijJ
12 − J ij . (3.1)

Flat connection introduced in [12] is derived by taking the limit of the connection for O(N)

theory [21] and it takes the form

A+ =
i√
2

[

e−iσ+wyiJ+i + eiσ+wyiJ−i
]

,

A− =
1

w

[

−i∂−χJ12 − 1√
2
e−iσ+w∂−yiJ+i +

1√
2
eiσ+w∂−yiJ−i

]

, (3.2)

where w is spectral parameter. Then using the constraint j+ = 0 and the equations of

motion for yi (2.18) together with (3.1) we obtain

∂+A− − ∂−A+ + [A+,A−] = 0 . (3.3)

In other words A given (3.2) defines flat Lax connection. As the next step we use (2.15)

and write

dx+ = dσ+ ,

dx− − ~y2dx+ = dσ−2

(

1

4
+ ∂−χ

)

. (3.4)

Then we obtain

A = A+dσ+ + A−dσ− = A+dx+ + Ã(dx− − ~y2dx+) , (3.5)

– 5 –
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where we have defined

Ã ≡ A−
1

2(1
4 + ∂−χ)

=

=
1

w

[

−i

(

1

4
− (∂x−~y)2

)

J12 − 1√
2
e−ix+w∂x−yiJ+i +

1√
2
eix+w∂x−yiJ−i

]

, (3.6)

where in the final step we used (2.16) and (2.17). Finally, we can perform gauge transfor-

mation to remove the constant part of the connection

A′ = g−1Ag + g−1dg , g = ei 1
4w

x−J12
(3.7)

and we obtain

A′
+ =

i√
2

[

e−ix+w− i
4w

x−

yiJ+i + eix+w+i 1
4w

x−

yiJ−i
]

,

Ã′ =
1

w

[

i(∂x−y)2J12 − 1√
2
e−ix+w−i 1

4w
x−

∂x−yiJ+i + +
1√
2
eix+w+i 1

4w
x−

∂x−yiJ−i

]

. (3.8)

In what follows we use the Lax connection (3.8) where we will write A instead of A′. Let

us now rewrite the Lax connection as

A = (A+ − ~y2Ã−)dx+ + Ã−dx− =

= (A+ − ~y2Ã− + Ã−)dτ + (A+ − ~y2Ã− − Ã−)dσ , (3.9)

where we have introduced σ, τ defined as

x± = τ ± σ . (3.10)

We see that the spatial component of Lax connection Aσ takes the form

Aσ = (A+ − ~y2Ã− − Ã−) =

=
i√
2

[

e−ix+w− i
4w

x−

yiJ+i + eix+w+i 1
4w

x−

yiJ−i
]

− (3.11)

−(1+~y2)
1

w

[

i(∂x−y)2J12− 1√
2
e−ix+w−i 1

4w
x−

∂x−yiJ+i+
1√
2
eix+w+i 1

4w
x−

∂x−yiJ−i

]

.

The spatial component of Lax connection given above will be the central object for the

study of the integrability of the theory. Explicitly, we will calculate the Poisson bracket

between these components for different spectral parameters w, v. Before we proceed to this

calculation we have to develop corresponding Hamiltonian formalism.

4. Hamiltonian formalism

Our goal is to develop the Hamiltonian formalism for the action

S = 4

∫

dx+dx−
√−η[∂x+~y∂x−~y − 1

4
~y2 + ~y2(∂x−~y∂x−~y)] . (4.1)

– 6 –
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If we again introduce coordinates τ, σ as

x± = τ ± σ (4.2)

and consequently

∂x+ =
1

2
(∂τ + ∂σ) , ∂x− =

1

2
(∂τ − ∂σ) (4.3)

we obtain

S =

∫

dτdσ[(∂τ~y)2 − (∂σ~y)2 − ~y2 + ~y2(∂τ~y − ∂σ~y)2] . (4.4)

Then the momentum πi conjugate to yi takes the form

πi =
δL

δ∂τyi
= 2[∂τyi + ~y2(∂τy

i − ∂σyi)] (4.5)

and we have following canonical Poisson brackets

{

yi(σ), πj(σ
′)
}

= δi
jδ(σ − σ′) . (4.6)

Using (4.5) we can express ∂τy
i as function of πi and ∂σyi

∂τy
i =

1
2πi + ~y2∂σyi

1 + ~y2
. (4.7)

Then corresponding Hamiltonian density takes the form

H = ∂τyiπi − L =
~π2

4(1 + ~y2)
+

~y2(∂σ~y~π)

1 + ~y2
− ~y2(∂σ~y)2

1 + ~y2
+ (∂σ~y)2 + ~y2. (4.8)

Finally, we use the relation (4.7) to express (3.11) as a function of canonical variables

Aσ =
i√
2

[

e−ix+w− i
4w

x−

yiJ+i + eix+w+i 1
4w

x−

yiJ−i
]

−

− 1

w

[

i

4(1 + ~y2)

(

1

2
~π − ∂σ~y

)2

J12 − 1

2
√

2
e−ix+w−i 1

4w
x−

(

1

2
πi − ∂σyi

)

J+i+

+
1

2
√

2
eix+w+i 1

4w
x−

(

1

2
πi − ∂σyi

)

J−i

]

. (4.9)

Now we are ready to calculate the Poisson brackets

{

Aσ,αβ(σ,w),Aσ,γδ(σ
′, v)

}

, (4.10)

where α, β and γ, δ label matrix indices of generators J ’s. Since in the following we will

consider the spatial components of Lax connection only we omit the subscript σ. Explicitly

we define Aσ,αβ ≡ Aαβ.

– 7 –
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Now using the canonical Poisson brackets determined above we calculate the Poisson

bracket of spatial component of Lax connection. Using

{

(

1

2
~π − ∂σ~y

)2

(σ),

(

1

2
πi − ∂σ′yi

)

(σ′)

}

=

(

1

2
π − ∂σyi

)

(σ)[∂σ′δ(σ − σ′) − ∂σδ(σ − σ′)] ,

{

(

1

2
πi − ∂σyi

)

(σ),

(

1

2
~π − ∂σ′~y

)2

(σ′)

}

= −
(

1

2
πi−∂σ′yi

)

(σ′)[∂σδ(σ−σ′)−∂σ′δ(σ−σ′)] ,

{

(

1

2
~π − ∂σ~y

)2

(σ),

(

1

2
~π − ∂σ′~y

)2

(σ′)

}

= 2

(

1

2
πi − ∂σyi

)

(σ)[∂σ′δ(σ − σ′) −

−∂σδ(σ − σ′)]

(

1

2
πi − ∂σ′yi

)

(σ′) (4.11)

we obtain, after straightforward calculations, following result

{

Aαβ(σ,w),Aγδ(σ
′, v)

}

= Aαγ,βδ(σ,w, v)δ(σ − σ′) + Bαγ,βδ(σ, σ′, w, v)∂σ′δ(σ − σ′) +

+Cαγ,βδ(σ, σ′, w, v)∂σδ(σ − σ′) , (4.12)

where

Aαγ,βδ(σ,w, v) =

=
i(w − v)

8vw
e−ix+(v+w)− i(v+w)

4vw
x−

J+i
αβJ+i

γδ − i(v + w)

8vw
e−ix+(w−v)− i(v−w)

4vw
x−

J+i
αβJ−i

γδ +

+
i(v + w)

8vw
ei(w−v)x++

i(v−w)
4wv

x−

J−i
αβJ+i

γδ − i(w − v)

8wv
eix+(v+w)+

i(v+w)
4vw

x−

J−i
αβJ−i

γδ +

+
i

4w
√

2(1+~y2)

[(

1

2
πi−∂σyi

)

e−ix+v− i
4v

x−

J12
αβJ+i

γδ +eix+v+ i
4v

x−

(

1

2
πi−∂σyi

)

J12
αβJ−i

γδ

]

−

− i

4v
√

2(1+~y2)

[(

1

2
πi−∂σyi

)

e−ix+w− i
4w

x−

J+i
αβJ12

γδ +eix+w+ i
4w

x−

(

1

2
πi−∂σyi

)

J−i
αβJ12

γδ

]

+

+
i

16vw

1

(1 + ~y2)2

(

1

2
~π − ∂σ~y

)2[

e−ix+v− i
4v

x−

yiJ12
αβJ+i

γδ − eix+v+ i
4v

x−

yiJ12
αβJ−i

γδ −

−e−ix+w− i
4w

x−

yiJ+i
αβJ12

γδ + eix+w+ i
4w

x−

yiJ−i
αβJ12

γδ

]

, (4.13)

Cαγ,βδ(σ, σ′, w, v) =

= − 1

16vw
[e−ix+w− i

4w
x−

J+i
αβ − eix+w+ i

4w
x−

J−i
αβ ](σ) ×

×[e−ix+v− i
4v

x−

J+i
γδ − eix+v+ i

4v
x−

J−i
γδ ](σ′) +

+
i

16vw

1

(1 + ~y2)
(
1

2
πi − ∂σyi)(σ)[e−ix+v− i

4v
x−

J12
αβJ+i

γδ − eix+v+ i
4v

x−

J12
αβJ−i

γδ ](σ′) +

+
i

16vw
[e−ix+w− i

4w
x−

J+i
αβJ12

γδ − eix+w+ i
4w

x−

J−i
αβJ12

γδ ](σ)
(1
2πi − ∂σ′yi)

(1 + ~y2)
(σ′) −

− 1

8wv

(1
2πi − ∂σyi)

1 + ~y2
(σ)

(1
2πi − ∂σ′yi)

1 + ~y2
(σ′)J12

αβJ12
γδ (4.14)
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and

Bαγ,βδ(σ, σ′, w, v) =

=
1

16vw
[e−ix+w− i

4w
x−

J+i
αβ − eix+w+ i

4w
x−

J−i
αβ](σ) ×

×[e−ix+v− i
4v

x−

J+i
γδ − eix+v+ i

4v
x−

J−i
γδ ](σ′) −

− i

16vw

1

(1 + ~y2)
(
1

2
πi − ∂σyi)(σ)[e−ix+v− i

4v
x−

J12
αβJ+i

γδ − eix+v+ i
4v

x−

J12
αβJ−i

γδ ](σ′) −

− i

16vw
[e−ix+w− i

4w
x−

J+i
αβJ12

γδ − eix+w+ i
4w

x−

J−i
αβJ12

γδ ](σ)
(1
2πi − ∂σ′yi)

(1 + ~y2)
(σ′) +

+
1

8wv

(1
2πi − ∂σyi)

1 + ~y2
(σ)

(1
2πi − ∂σ′yi)

1 + ~y2
(σ′)J12

αβJ12
γδ . (4.15)

Then it is easy to see that matrices A,B,C obey the relations

Aαγ,βδ(σ,w, v) = −Aγα,δβ(σ, v,w)

(4.16)

and

Bαγ,βδ(σ, σ′, w, v) = −Cγα,βδ(σ
′, σ, v, w)

(4.17)

that are in agreement with general definition given in (A.11).

Now we are ready to exhibit the general structure of the Poisson brackets, following [22].

Let us introduce the matrices rαγ,βδ(σ,w, v), sαγ,βδ(σ,w, v) whose explicit form in terms of

matrices Bαγ,βδ,Cαγ,βδ is given in (A.12). Then, using also the formula

f(x, y)∂xδ(x − y) = f(x, x)∂xδ(x − y) + ∂yf(x, y)y=xδ(x − y) (4.18)

we can rewrite the Poisson bracket (4.12) into the form
{

Aαβ(σ,w),Aγδ(σ
′, v)

}

= Aαγ,βδ(σ,w, v)δ(σ − σ′) −
−∂uBαγ,βδ(σ, u,w, v)u=σδ(σ − σ′) − ∂uCαγ,βδ(u, σ,w, v)u=σδ(σ − σ′) −
−Bαγ,βδ(σ, σ,w, v)∂σδ(σ − σ′) − Cαγ,βδ(σ

′, σ′, w, v))∂σ′δ(σ − σ′) =

= (∂σrαγ,βδ(σ,w, v) − ∂σsαγ,βδ(σ,w, v))δ(σ − σ′) − 2sαγ,βδ(σ,w, v)∂σδ(σ − σ′) +

+[(rαγ,σδ(σ,w, v) − sαγ,σδ(σ,w, v))Aσβ (σ,w) −
−Aασ(σ,w)(rσγ,βδ(σ,w, v) − sσγ,βδ(σ,w, v))]δ(σ − σ′) +

+[(rαγ,βσ(σ,w, v) + sαγ,βσ(σ,w, v))Aσδ(v, σ) −
−Aγσ(v, σ)(rασ,βδ(σ,w, v) + sασ,βδ(σ,w, v))]δ(σ − σ′) . (4.19)

The fact that the Poisson bracket of Lax connection takes the form given above has an

important consequence for the integrability of the theory. As was shown in [22] and re-

viewed in appendix integrable theories with the Poisson brackets of the Lax connection

given in (4.19) or in its alternative form given in (A.15) possesses infinite number of con-

served charges that are in involution with respect to given Poisson bracket structure. In

other words we have shown that the reduced sigma model is classically integrable.
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A. Review of basic properties of monodromy matrix

In this section we give a review of properties of monodromy matrix, following [23]. As

opposite to this paper we will write all expressions with explicit matrix notation.

The monodromy matrix Tαβ(σ1, σ2, w), where w is a spectral parameter, can be defined

as

∂σ1Tαβ(σ1, σ2, w) = Aαγ(σ1, w)Tγβ(σ1, σ2, w) ,

∂σ2Tαβ(σ1, σ2, w) = −Tαγ(σ1, σ2, w)Aγβ(σ2, w) (A.1)

with the normalisation condition

Tαβ(σ1, σ2, w) = δαβ (A.2)

and

T −1
αβ (σ1, σ2, w) = Tαβ(σ2, σ1, w) . (A.3)

Note that in our notation Aαβ(σ,w) is a spatial component of Lax connection.

Our goal is to calculate the Poisson bracket between T (w) and T (v). Following [23]

we consider the Poisson bracket between any dynamical quantity Xγδ and Tαβ(σ1, σ2, w)

where Xγδ does not depend σ1 and σ2

{Tαβ(σ1, σ2, w),Xγδ} = Wαγ,βδ(σ1, σ2, w) , (A.4)

where

∂σ1Xγδ = 0 , ∂σ2Xγδ = 0 . (A.5)

If we derive (A.4) with respect σ1 and σ2 and use (A.1) we obtain two differential equations

for W (σ1, σ2)

∂σ1Wαγ,βδ(σ1, σ2, w) = Aασ(σ1, w)Wσγ,βδ(σ1, σ2, w) + {Aασ(σ1, w),Xγδ} Tσβ(σ1, σ2, w)

(A.6)

and

∂σ2Wαγ,βδ(σ1, σ2, w) = −Tασ(σ1, σ2, w) {Aσβ(σ2, w),Xγδ}−Wαγ,σδ(σ1, σ2, w)Aσβ(σ2, w).

(A.7)

The equations (A.6) and (A.7) have solution in the form

Wαγ,βδ(σ1, σ2, w) =

∫ σ1

σ2

dσ′Tασ1(σ1, σ
′, w)

{

Aσ1σ2(σ
′, w),Xγδ

}

Tσ2β(σ′, σ2, w) . (A.8)

Let us now presume that Xγδ = Tγδ(σ
′
1, σ

′
2, v) where all σ1, σ2, σ

′
1 and σ′

2 are distinct.

Then (A.4) together with (A.8) implies

{

Tαβ(σ1, σ2, w),Tγδ(σ
′
1, σ

′
2, v)

}

=

∫ σ1

σ2

dσ

∫ σ′
1

σ′
2

dσ′Tασ1(σ1, σ, w)Tγρ1(σ
′
1, σ

′, v) × (A.9)

×
{

Aσ1σ2(σ,w),Aρ1ρ2(σ
′, v)

}

Tσ2β(σ, σ2, w)Tρ2δ(σ
′, σ′

2, v) .

– 10 –
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Let us now presume that the Poisson bracket of spatial components of Lax connection

A(σ,w) and A(σ′, v), where w and v are spectral parameters, takes the form

{

Aαβ(σ,w),Aγδ(σ
′, v)

}

= Aαγ,βδ(σ,w, v)δ(σ − σ′) + Bαγ,βδ(σ, σ′, w, v)∂σ′δ(σ − σ′) +

+Cαγ,βδ(σ, σ′, w, v)∂σδ(σ − σ′) . (A.10)

Then an antisymmetry of Poisson bracket implies

Aαγ,βδ(σ,w, v) = −Aγα,δβ(σ, v,w) ,

Bαγ,βδ(σ, σ′, w, v) = −Cγα,βδ(σ
′, σ, v, w) ,

Cαγ,βδ(σ, σ′, w, v) = −Bγα,δβ(σ′, σ, v, w) .

(A.11)

Let us introduce matrices rαγ,βδ(σ,w, v), sαγ,βδ(σ,w, v) defined as

sαγ,βδ(σ,w, v) =
1

2
[Bαγ,βδ(σ, σ,w, v) + Bγα,δβ(σ, σ,w, v)] =

=
1

2
[Bαγ,βδ(σ, σ,w, v) − Cαγ,βδ(σ, σ,w, v)] ,

rαγ,βδ(σ,w, v) =
1

2
[Bαγ,βδ(σ, σ,w, v) − Bγα,δβ(σ, σ, v, w)] + r̂αγ,βδ(σ,w, v) =

=
1

2
[Bαγ,βδ(σ, σ,w, v) + Cαγ,βδ(σ, σ, v, w)] + r̂αγ,βδ(σ,w, v) ,

(A.12)

where r̂ is solution of the inhomogeneous first order differential equation

∂σ r̂αγ,βδ(σ,w, v)+[r̂αγ,σδ(σ,w, v)Aσβ(σ,w)−Aασ(σ,w)r̂σγ,βδ(σ,w, v)]+

+[r̂αγ,βσ(σ,w, v)Aσδ(v, σ)−Aγσ(v, σ)r̂ασ,βδ(σ,w, v)] = Ωαγ,βδ(σ,w, v) ,

(A.13)

where

Ωαγ,βδ(σ,w, v) = Aαγ,βδ(σ,w, v) − ∂u(Bαγ,βδ(σ, u,w, v) + Cαγ,βδ(u, σ,w, v))u=σ +

+[Aγσ(σ, v)Bασ,βδ(σ, σ,w, v) − Bαγ,βσ(σ, σ,w, v)Aσδ(σ, v)] +

+[Aασ(σ,w)Cσγ,βδ(σ, σ,w, v) − Cαγ,σδ(σ, σ,w, v)Aσβ (σ,w)] . (A.14)

Then we can rewrite the Poisson bracket (4.12) in the form

{

Aαβ(w, σ),Aγδ(v, σ′)
}

=[rαγ,ρδ(w, v, σ)Aρβ(σ,w) −Aαρ(σ,w)rρβ,γδ(w, v, σ)+ (A.15)

+rαγ,βσ(w, v, σ)Aσδ(σ, v) −Aγσ(σ, v)rασ,βδ(w, v, σ)+

+ sαγ,ρδ(w, v, σ)Aρβ(σ,w) −Aαρ(σ,w)sρβ,γδ(w, v, σ)−
−sαγ,βσ(w, v, σ)Aσδ(σ, v)−Aγσ(σ, v)sασ,βδ(w, v, σ)] δ(σ − σ′)−
−(r(σ,w, v)+s(σ,w, v)−r(σ′ , w, v)+s(σ′, w, v))αγ,βδ∂σδ(σ−σ′).

– 11 –
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Let us now return to the equation (A.13). The general solution of this equation takes the

form

r̂αγ,βδ(σ,w, v)=

∫ σ

a

dσ′Tασ1(σ, σ′, w)Tγσ1(σ, σ′, v)Ωσ1σ2,ρ1ρ2(σ
′, w, v)Tρ1β(σ′, σ, w)Tρ2δ(σ

′, σ, v)

+Tασ1(σ, a,w)Tβσ2(σ, a, v)N̂σ1σ2,ρ1ρ2(a,w, v)Tρ1β(a, σ,w)Tρ2γ(a, σ, v) ,

(A.16)

where a is arbitrary real number and N̂αβ,γδ(w, v, a) is an arbitrary σ-independent matrix

that satisfy the relation

N̂γα,δβ(a,w, v) = −N̂αγ,βδ(a, v, w) . (A.17)

Note that the N̂ part of r̂ is solution of the homogeneous equation associated with (A.13)

and has to be determined by choice of boundary conditions for r̂(σ,w, v). We would like

also to mention that r̂ can be non-local expressions in terms of canonical variables of theory.

Then, when it is possible, we can choose N̂ such that r̂ be a local matrix in terms of field

of the theory.

Using of the form of the Poisson bracket (A.15) we can calculate the algebra of mon-

odromy matrices when σ1, σ2, σ
′
1, σ

′
2 are all different. We obtain, if σ1 and σ′

1 are larger

than σ2 and σ′
2, σ0

1 = min(σ1, σ
′
1), σ0

2 = max(σ2, σ
′
2)

{

Tαβ(σ1, σ2, w),Tγδ(σ
′
1, σ

′
2, v)

}

=

= Tασ1(σ1, σ
0
1 , w)Tγσ2(σ

′
1, σ

0
1 , v)

[

r(σ0
1 , w, v) + ǫ(σ1 − σ′

1)s(σ
0
1 , w, v)

]

σ1σ2,ρ1ρ2
×

×Tρ1β(σ0
1 , σ2, w)Tρ2δ(σ

0
1 , σ

′
2, v) −

−Tασ1(σ1, σ
0
2 , w)Tγσ2(σ

′
1, σ

0
2 , v)

[

r(σ0
2, w, v) + ǫ(σ′

2 − σ2)s(σ
0
2 , w, v)

]

σ1σ2,ρ1ρ2
×

×Tρ1β(σ0
2 , σ2, w)Tρ2δ(σ

0
2 , σ

′
2, v) , (A.18)

where ǫ(x) = sign(x). It is important to note that in the non-ultralocal case the alge-

bra (A.18), due to the presence of the s-term, the function

△(1)
αγ,βδ(σ1, σ2, σ

′
1, σ

′
2, w, v) =

{

Tαβ(σ1, σ2, w),Tγδ(σ
′
1, σ

′
2, v)

}

(A.19)

is well defined and continuous where σ1, σ2, σ
′
1, σ

′
2 are all distinct, but it has discontinuities

proportional to 2s across the hyperplanes corresponding to some of the σ1, σ2, σ
′
1, σ

′
2 being

equal. Then if we want to define the Poisson bracket of transfer matrices for coinciding

intervals (σ1 = σ′
1, σ2 = σ′

2) or adjacent intervals (σ′
1 = σ2 or σ1 = σ′

1) requires the value of

the discontinuous matrix-valued function △(1) at its discontinuities. It was shown in [22]

that requiring anti-symmetry of the Poisson bracket and the derivation rule to hold imposes

the symmetric definition of △(1) at its discontinuous points. For example, at σ1 = σ′
1 we

must define

△(1)
αγ,βδ(σ1, σ2, σ1, σ

′
2, w, v) = lim

ǫ→0+

1

2
(△(1)

αγ,βδ(σ1, σ2, σ1 + ǫ, σ2, w, v) +

+△(1)
αγ,βδ(σ1, σ2, σ1 − ǫ, σ′

2, w, v)) (A.20)

– 12 –
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and likewise for all other possible coinciding endpoints. This definition of △(1) at its

discontinuities implies an definition of the Poisson bracket between transition matrices for

coinciding and adjacent intervals that is consistent with the anti-symmetry of the Poisson

bracket and the derivation rule. However as was shown in [23]6 this definition of the Poisson

bracket
{

T ⊗, T
}

7 does not satisfy the Jacobi identity so that in fact no strong definition

of the bracket
{

T ⊗, T
}

with coinciding or adjecent intervals can be given without violating

the Jacobi identity. However, as was further shown in [23] it is possible to give a weak

definition of this bracket for coinciding or adjacent intervals as well.8 We are not going

into details of the procedure, interesting reader can read the original paper [23] or more

recent [24]. For example, it was shown that the algebra of two T ’s for equal intervals takes

the form

{Tαβ(σ1, σ2, w),Tγδ(σ1, σ2, v)} = rαγ,σρ(σ1, w, v)Tσβ(σ1, σ2, w)Tρδ(σ1, σ2, v) −
−Tασ(σ1, σ2, w)Tγρ(σ1, σ2, v)rσρ,βδ(σ2, w, v) ,(A.21)

where {, } stands for the weak brackets defined in (A.20).

Let us now return to our model. Since the reduced sigma model is defined on the

infinite line it is natural to introduce following object

Ω(w) = T (∞,−∞, w) . (A.22)

Further, it is also natural to define

r(w, v) ≡ lim
σ→∞

r(w, v, σ) = lim
σ→−∞

r(w, v, σ) . (A.23)

For example, this condition clearly holds for world-sheet fields that vanish at asymptotic

infinity. Then using (A.21) we finally obtain

{TrΩ(w),TrΩ(v)} = {Ωαα(w),Ωββ(v)} = (A.24)

= rαβ,σ1σ2(w, v)Ωσ1α(w)Ωσ2β(v) − Ωασ1(w)Ωβσ2(v)rσ1σ2,αβ(w, v) =

= rαβ,σ1σ2(w, v)Ωσ1α(w)Ωσ2β(v) − rαβ,σ1σ2(w, v)Ωσ1α(w)Ωσ2β(v) = 0 .

Since TrΩ(w) is generator of local conserved charges the result given above implies that

these conserved charges are in involution with respect to brackets (A.20). This result

implies an classical integrability of given theory.
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